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Moving sand waves and the overlying tubulent flow were measured on the Wilga River
in Poland, and the Tirnava Mica and Buzau Rivers in Romania. Bottom elevations and
flow velocities were measured at six points simultaneously by multi-channel measuring
systems. From these data, the linear and two-dimensional sections of the three-
dimensional correlation and structure functions and various projections of sand wave
three-dimensional spectra were investigated.

It was found that the longitudinal wavenumber spectra of the sand waves in the
region of large wavenumbers followed Hino’s ®3 law (S(K

x
)£K−$

x
) quite satis-

factorily, confirming the theoretical predictions of Hino (1968) and Jain & Kennedy
(1974). However, in contrast to Hino (1968), the sand wave frequency spectrum in the
high-frequency region was approximated by a power function with the exponent ®2,
while in the lower-frequency region this exponent is close to ®3.

A dispersion relation for sand waves has been investigated from analysis of structure
functions, frequency spectra and the cross-correlation functions method. For
wavelengths less than 0±15–0±25 of the flow depth, their propagation velocity C is
inversely proportional to the wavelength λ. When the wavelengths of spectral
components are as large as 3–4 times the flow depth, no dispersion occurs. These results
proved to be in good qualitative agreement with the theoretical dispersion relation
derived from the potential-flow-based analytical models (Kennedy 1969; Jain &
Kennedy 1974). We also present another, physically-based, explanation of this
phenomenon, introducing two types of sand movement in the form of sand waves. The
first type (I) is for the region of large wavenumbers (small wavelengths) and the second
one (II) is for the region of small wavenumbers (large wavelengths). The small sand
waves move due to the motion of individual sand particles (type I, C£λ−") while
larger sand waves propagate as a result of the motion of smaller waves on their
upstream slopes (type II, C£λ!). Like the sand particles in the first type, these smaller
waves redistribute sand from upstream slopes to downstream ones. Both types result
in sand wave movement downstream but with a different propagation velocity.

The main characteristics of turbulence, as well as the quantitative values
characterizing the modulation of turbulence by sand waves, are also presented.
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1. Introduction

The movement of sand waves in one-directional water flows (rivers, canals, seabed
currents, etc.) is a complicated natural phenomenon determining the bottom sediment
transport and hydraulic resistance. Despite the intensive survey of sand wave
morphometry and dynamics and progress in understanding these phenomena, some
problems remain unsolved. One of them concerns the sand wave statistical dynamics
expressed in frequency and wavenumber spectra, as well as other characteristics that
describe their space–time structure. Most of the works on the statistical dynamics of
sand waves are based upon the analysis of bottom longitudinal profiles obtained in
laboratory experiments (Nordin & Algert 1966; Fukuoka 1968; Jain & Kennedy 1974;
Shen & Cheong 1977; Engel & Lau 1980; Tsujimoto & Nakagawa 1983; Nikora 1987)
and in the field (Nordin 1971; Annambhotla, Sayre & Livesey 1972; Levey, Kjerfve &
Getzen 1980; Baliga & Hudspeth 1981; Nikora 1983). Only a few of these works were
devoted to investigations of temporal profiles of bottom elevation. The authors are
familiar with only one investigation of bottom wave frequency properties in field
conditions (Dinehart 1989), but the scaling in the frequency spectra and dispersion
relationship were not investigated in that work.

1.1. Wa�enumber spectrum

The most substantial result of the above-mentioned works was the discovery and
confirmation of the scaling region in the longitudinal wavenumber spectrum (Hino
1968; Jain & Kennedy 1974)

S(K
x
)¯A

x
K−$

x
, K

x!
!K

x
, (1)

where S(K
x
) is the wavenumber spectrum of bed elevations in the main flow direction,

K
x

is the longitudinal wavenumber (K
x
¯ 2π}λ, λ is the wavelength), K

x!
is the

wavenumber that restricts applicability of (1), and A
x

is some non-dimensional
parameter. The parameter A

x
was initially regarded as a universal constant (Hino

1968), but subequent analysis of data in respect to ripples and dunes in different rivers
(Nikora 1983) showed its almost square connection with Froude number (A

x
£Fr#±

",
Fr¯ u}(gh)"/#, where u is the vertically averaged flow velocity, g is the gravitational
acceleration, and h is the flow depth). Besides, it was established that the spectral ®3
law is valid not only for small scales, that correspond to ripples and dunes, but also for
scales commensurable with the river width (Grinvald & Nikora 1988). The empirical
wavenumber spectra of bottom longitudinal profiles that were obtained by Nikora,
Borik & Kuzmin (1988) and Grinvald & Nikora (1988) are characterized by several
scaling regions with S(K

x
)¯A

xi
K−$

x
. A sketch of this spectrum is shown in figure 1.

The scaling regions are divided by spectral maxima corresponding to river bedforms
with scales varying from those of the flow depth to several tens of river width. The
behaviour of spectra in scaling regions is described by the common relationship

S(K
x
)¯A

xi
K−$

x
, (2)

where A
xi

is interpreted as the square of the characteristic steepness of bedforms that
make up the ith scaling region in the spectrum (Nikora 1983; Grinvald & Nikora
1988). The A

xi
value increases from small wavenumber scaling regions to the large ones

(figure 1). For instance, for the Dniester River (Ukraine) A
xi

changes from 10−& on
scales of about 1 km (7 river widths) to 10−$ on scales of the flow depth. (Here we
present the estimates obtained for spectra, the whole energy of which is concentrated
in the positive region of wavenumbers and angular frequencies. Unlike Hino (1968) we
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F 1. Schematic spectrum of the longitudinal profile of bed elevations in sand rivers showing
three scaling regions: macro, meso, and micro, characterized by three length scales ; flow depth H,
river width W, and valley width W

!
.

consider not the two-sided spectra with circular frequencies but the single-sided spectra
with angular frequencies.) The right-side scaling region in the spectrum S(K

x
), which

we are going to consider in this paper, corresponds to ripples and dunes (figure 1). It
is also noteworthy that Hino’s (1968) spectral ®3 law reflects the spatial self-similarity
of sand wave longitudinal profiles that follows from the relationship S(K

x
)£K−(#H+")

x

(Mandelbrot 1982). Hurst’s exponent H is equal to 1 for the self-similarity situation,
while for self-affinity H is less than 1.

In a few studies, the exponent in relationship (1) is not considered as universal. Shen
& Cheong (1977), for example, concluded from laboratory and field data that the
exponent changes from ®4 on ripply bottoms to ®3 with fully developed dunes.

1.2. Frequency spectrum and dispersion relation

Sand wave frequency spectra have been investigated less comprehensively, and the
scaling relationships

S(ω)£ω−#, ω
!
!ω!ω

"
, (3)

S(ω)£ω−$, ω
"
!ω!ω¢ (4)

proposed by Hino (1968) have been explored only from limited laboratory experiments
(Ashida & Tanaka 1967; Nikora 1987). The following dispersion relations correspond
to formulae (1), (3) and (4) :

C(K
x
)£K

x
or ω£K#

x
, ω

!
!ω!ω

"
, (5)

C(K
x
)£K!

x
or ω£K

x
, ω

"
!ω!ω¢, (6)

where C is the analogue of phase velocity for sand waves, ω is the angular frequency
(ω¯ 2π}T ), ω

!
and ω

"
are the frequencies restricting scaling regions (3) and (4).

Shen & Cheong (1977) suggested a more general formulae for the dispersion relation

C(K
x
)£Kθ

x
or ω£Kθ+"

x
, θ" 0, (7)

and for the sand wave frequency spectrum

S(ω)£ω−ξ, (8)

where ξ¯ (β­θ)}(θ­1), θ is the positive exponent, and β is the scaling exponent in
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F 2. Plan views and cross-sections of experimental river reaches; (a) Wilga, Poland; (b) Tirnava
Mica, Romania; and (c) Buzau, Romania (dashed boxes show the places where radiators were
located).

the wavenumber spectrum. When θ¯ 1, relationship (7) corresponds to dispersion
relationship (5) (also obtained theoretically by Jain & Kennedy (1974) for sand waves
in the region of large wavenumbers). In the work of Shen & Cheong (1977), the
empirical frequency spectra of sand waves in the flume are also given. In contrast to
Hino’s (1968) results, they are close to relationship (3) in the high-frequency region and
to relationship (4) in the low-frequency region. It should be also added that Shen &
Cheong (1977), Baliga & Hudspeth (1981), Nikora (1983, 1987) and Cheong (1992)
regarded sand wave field as non-dispersive and subject to relationship (6).

The above short review highlights some contradictions in the interpretation of sand
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Q
(m$ s−")

H
(m)

W
(m)

u
(m s−")

u
$

(cm s−") I
Ch

m!
±
& s−" Fr

Re
(¬10−&)

p
(g l−")

d
(mm)

The Wilga River (Poland)
0±321–
0±574

0±19–
0±30

6±91–
7±07

0±24–
0±28

2±7–
3±4

0±00040 24±0–
28±7

0±15–
0±18

0±47–
0±80

0±010 0±35

The Tirnava Mica River (Romania)
2±09–
3±19

0±33–
0±41

17±0–
18±0

0±37–
0±43

3±3–
3±7

0±00034 34±9–
36±4

0±20–
0±21

1±2–
1±8

0±034 0±64

The Buzau River (Romania)
2±42–
3±55

0±18–
0±24

47±0–
48±0

0±30–
0±32

3±3–
3±8

0±00059–
0±00061

23±1–
28±9

0±20–
0±24

0±57–
0±72

0±024 0±31

T 1. Ranges of hydraulic and morphometric characteristics for the experimental river reaches.
Here: Q is the water discharge; H is the averaged (cross-sectionally) depth; W is the river width; u
is the averaged (cross-sectionally) velocity ; u

$

is the friction velocity, u
$

¯ (gHI )"/# ; I is the water
surface slope; Ch is the Chezy parameter, Ch¯U}(HI )"/# ; Fr is the Froude number, Fr¯U}(gH )"/# ;
Re is the Reynolds number, Re¯UH}ν ; p is the water turbidity ; and d is the mean diameter of
bottom sand.

wave spectral dynamics. Further investigations are necessary for their clarification, and
priority should be given to obtaining more field data.

The purpose of this work is to further investigate the space–time structure of sand
waves (ripples and dunes) on the basis of synchronous measurements of time
fluctuations of bottom elevations at spatially fixed verticals. Also, an attempt has been
made to evaluate some properties of the flow turbulence over the surveyed sand waves.
The preliminary results of this paper, concerning only the Wilga River (Poland), were
reported in Nikora et al. (1995).

2. Field measurements

The field measurements were carried out in September 1993 on the Wilga River
(Poland) and in September 1994 on the Tirnava Mica River (Romania) and the Buzau
River (Romania). Plans and profiles of the experimental sections are shown in figure
2, while table 1 contains the main hydraulic and morphometric characteristics.

The field survey comprised systematic hydrometric measurements (water discharge,
water level, water surface slope, bottom configuration, etc.) and special field
experiments for studying the dynamics of sand waves and for obtaining the
characteristics of the stream turbulence over them.

A six-channel microsounder Sh-1, designed and manufactured at the Institute of
Geophysics and Geology of Moldova’s Academy of Sciences, was used to measure the
bottom elevations. The measuring system consists of six sound radiators, a
microsounder and a laptop computer. This system permitted synchronous measure-
ments of bottom elevations at six spatially fixed verticals with any sampling rate
lower than 2 Hz. The accuracy of the stream depth measurements within the 6–100 cm
range was 1–2 mm. To reduce flow disturbances by the radiators we used a specially
designed frame (figure 3) that allowed minimal immersing of the radiators in the water
flow (1±0–1±5 cm). The frame with the sound radiators was placed in the zone of the
stream with quasi-homogeneous hydraulic conditions, i.e. the spatial variability of the
flow depth, vertically averaged velocity and sand wave parameters were reasonably
small (the zones are shown as dashed boxes in figure 2). Also, we were lucky to have
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Line with radiators

F 3. Typical setting of the field experiments (The Tirnava Mica River, Romania).
The frame with radiators across the flow is shown.

N
Radiator
locations

∆t
(s)

T
(hr)

∆x
min

(m)
∆x

max

(m)
u

(m s−")
h

(m)
u
$

(cm s−")

The Wilga River (Poland)
1 Longitudinal 15 7±3 0±10 0±70 0±35 0±25 3±1
2 Transversal 15 5±5 0±10 0±70 0±34 0±22 2±9

The Tirnava Mica River (Romania)
1 Longitudinal 20 22±6 0±10 1±70 0±48 0±45 3±9
2 Transversal 20 23±5 0±10 1±70 0±48 0±40 3±7

The Buzau River (Romania)
1 Longitudinal 15 19±3 0±05 1±15 0±45 0±26 3±9
2 Transversal 4 17±5 0±05 1±15 0±45 0±26 3±9

T 2. Characteristics of the experiments. Here: ∆t is the time sampling interval, T is the period
of measurements ; ∆x

min
and ∆x

max
are the minimum and maximum distances between radiators ; u

is the vertically averaged velocity over measured sand waves ; h is the time-averaged depth over
measured sand waves ; and u

$

is the friction velocity over measured sand waves, u
$

¯ (ghI )"/#.

quasi-steady hydraulic conditions during the measurements : the temporal variability
of the water discharge and water level did not exceed 5%. This allowed us to consider
the sand wave fields investigated to be stationary and homogeneous. Therefore, we
could avoid any preliminary data filtering and could directly apply in our analysis
methods of the theory of stationary and homogeneous random fields (Monin &
Yaglom 1975; Bendat & Piersol 1980; Grinvald & Nikora 1988).

Two main deployment schemes of the micro-sounder radiators were used during the
field experiments : (i) along the flow and (ii) across the flow. The measurements carried
out along the flow were aimed at studying the longitudinal structure of sand waves,
while those carried out across the flow were intended for studying their transverse
structure. The main characteristics of these field experiments are given in table 2. In all
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F 4. Examples of depth (radiator elevation minus bottom elevation) time series for the
transverse sounder radiator location, the Buzau River, Romania (1, 2,…, 6 denote different
measuring verticals ; distances between them are: 1–2¯ 30 cm; 2–3¯ 10 cm; 3–4¯ 5 cm;
4–5¯ 20 cm; 5–6¯ 50 cm, sampling interval 4 s).

cases, bottom elevations were measured at six points simultaneously. Figure 4 shows
typical examples of the depth (radiator elevation minus bottom elevation) time series
with sampling interval 4 s for the Buzau River.

In several cases we also measured the instantaneous velocities of the flow over the
moving sand waves. Micropropeller current meters in a special measuring system
(Nikora et al. 1994) were used to measure the longitudinal velocities of the flow
simultaneously with the measurements of the bottom elevation fluctuations. The main
reason for these measurements was to evaluate turbulence characteristics on the
surveyed sections. Also, an attempt was made to estimate the degree of modulation of
the stream turbulence by the moving sand waves. The details of turbulence
measurements will be given in §4.
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3. Analysis of sand wave dynamics

Two approaches are used for describing the geometry and dynamics of sand waves
(Grinvald & Nikora 1988). With the first, the wavy bottom surface is regarded as a set
of visible sand waves, with each separate wave being regarded as a physical object
described by a system of geometric (length, height, steepness, etc.) and kinematic
(velocity of propagation) parameters. It is this traditional approach that is used in the
majority of works devoted to sand waves. According to the second approach the sand
waves are regarded as a moving random field of bottom elevations Z(x, y, t) (origin of
Z is lower than channel bed surface, at an arbitrary level), where x and y are the
longitudinal (the main flow direction) and transversal coordinates, and t is time. A
complete picture of such a field is provided by the n-dimensional probability density
when nU¢, which contains full information about the bottom sand wave relief.
Quantitative description of sand waves by means of n-dimensional probability
functions is theoretically possible, but in practice it entails great difficulties. In this
situation an acceptable compromise is the utilization of moment functions (corre-
lations, spectra, structure functions, etc.) for a quantitative evaluation of the sand
wave field.

In general, the spectrum of the bottom elevation field Z(x, y, t) is a function of six
variables : spatial coordinates x and y, time t, projections K

x
and K

y
of the wave vector

K, and the time frequency ω. For the already steady sand waves we can accept the
hypothesis of quasi-stationarity and of local spatial homogeneity that reduces their
description to the three-dimensional spectrum S(K

x
,K

y
,ω), the correlation function

R(∆x,∆y, τ) and the structure function D(∆x,∆y, τ). Functions S(K
x
,K

y
,ω),

R(∆x,∆y, τ) and D(∆x,∆y, τ) provide a rather complete description of the sand wave
structure and, to a certain degree, are connected with the traditional model of visible
sand waves. For instance, the average height h

w
of visible sand waves is connected with

the root-mean-square deviation of bottom elevations σ
z
by means of the relationship

h
w

¯mσ
z
(here m is in the range 1±7–2±0), while the average length L

w
of sand waves

is close to the wavelength λ that corresponds to the maximum ordinate of the spectrum
(Grinvald & Nikora 1988). It is the second approach (sand waves as moving field of
bottom elevations), considered to be of a more general and objective character, that
will be used below.

3.1. Correlation functions

The analysis and interpretation of the full-dimensional correlation function R(∆x,∆y, τ)
of the sand wave bottom involves certain difficulties. On the one hand, measuring
bottom elevation fluctuations at many points in order to calculate R(∆x,∆y, τ) is
technically difficult, especially in field conditions. On the other hand, it is difficult to
provide a visual presentation of the three-dimensional correlation function R(∆x,∆y, τ)
and, thus, to interpret it. A way out in this case is the obtaining and physical
interpretation of linear and two-dimensional sections of the three-dimensional function
R(∆x,∆y, τ). The schemes adopted for locating the micro-sounder radiators allowed us
to obtain and investigate the following sections of function R(∆x,∆y, τ) :

R(0, 0, τ) – time auto-correlation function;
R(∆x, 0, 0) – longitudinal spatial auto-correlation function;
R(0,∆y, 0) – transverse spatial auto-correlation function;
R(∆x, 0, τ) – longitudinal space–time correlation function, which may also be regarded

as a longitudinal time cross-correlation function R
ij
(τ) at distance ∆x

between measurement points i and j ;
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F 5. Examples of auto-correlation functions of sand waves for the Wilga River (Poland):
(a) R(τ), (b) R(∆x}h), R(∆y}h) (h is the time-averaged depth over measured sand waves).

R(0,∆y, τ) – transverse space–time correlation function, which may also be regarded as
a transverse time cross-correlation function R

ij
(τ) at distance ∆y between

measurement points i and j.

The calculated time auto-correlation functions R(τ) of bottom fluctuations resemble a
damped oscillation and, to a first approximation, they can be described by relationship
R(τ)¯ e−αrτr cos 2πτ}T. The prevailing periods T of fluctuations of the functions R(τ)
obtained, which characterize the time scales of moving sand waves, are typically
45–60 min for the Wilga River (Poland), 150–200 min for the Tirnava Mica River
(Romania) and 90–170 min for the Buzau River (Romania).

The longitudinal and transverse spatial correlation functions R(∆x) and R(∆y) have
shapes similar to that of R(τ). The spatial scales of sand waves in longitudinal and
transverse directions, revealed on the graphs of functions R(∆x) and R(∆y) as
characteristic wavelengths of their prevailing fluctuations, are approximately equal :
1±1–6±0 and 1±3–3±7 flow depths, respectively. Thus, the sand waves of all three
experimental river reaches investigated are characterized by substantial three-
dimensionality. Examples of functions R(τ), R(∆x) and R(∆y) are given in figure 5.
Longitudinal and transverse space–time correlation functions R(∆x, 0, τ) and R(0,∆y, τ)
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F 6. Topography of longitudinal space–time correlation function R(∆x, 0, τ) of sand waves
for the Wilga River (Poland).

also point to the above-mentioned space–time scales. The location of hills and
depressions in the relief of function R(0,∆y, τ) has an intermittent structure, thereby
reflecting the three-dimensional character of the sand waves. A peculiar feature of the
relief of the longitudinal space–time correlation function R(∆x, 0, τ) is the central,
highest, hill whose crest is oriented obliquely to the ∆x-axis (figure 6). In other words,
the time shift, which corresponds to the maxima of the longitudinal time cross
correlation function R

ij
(τ), increases linearly with the distance ∆x between measuring

verticals.

3.2. Structure functions

Nikora (1982) and Robert & Richards (1988) first used structure functions for
modelling the statistical properties of sand wave bottom longitudinal profiles. In this
work we have investigated the time D(0, 0, τ) and spatial D(∆x, 0, 0), D(0,∆y, 0)
sections of the three-dimensional structure function D(∆x,∆y, τ) defined by

D(∆x,∆y, τ)¯ [Z(x­∆x, y­∆y, t­τ)®Z(x, y, t)]# (9)

where the overbar denotes the averaging operator over space and time.
Examples of the measured structure functions are given in figure 7. A characteristic

feature of the time structure function D(τ) is the existence of two scaling regions with
the exponent close to 1±0 at small τ and with the exponent in the range 1±6–2±0 in the
region of intermediate τ. These features were revealed for all three experimental river
reaches. The longitudinal spatial structure function D(∆x) is also characterized by a
scaling form at small ∆x, with the scaling exponent close to 2±0 (figure 7). The same
result for D(∆x) was obtained earlier by Nikora (1982) in his analyses of the
longitudinal profiles of sand waves in some rivers in the former USSR.

The transverse structure function D(∆y) reflects the three-dimensional structure of
the sand wave field: its ordinates increase with the growth of the three-dimensionality
degree. In the region of small ∆y, the empirical functions D(∆y) obtained can be
approximated by power functions with exponents 1±1 (Wilga, Poland), 1±25 (Tirnava
Mica, Romania, figure 7) and 1±9 (Buzau, Romania). One can see that in contrast to
temporal and spatial longitudinal structure functions, the scaling of D(∆y) is far from
being universal.
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F 7. Examples of structure functions D(τ) (a) and D(∆x}h), D(∆y}h) (b), for the Tirnava
Mica River, Romania (h is the time-averaged depth over measured sand waves).

The sections of the three-dimensional structure function D(∆x,∆y, τ) described
contain information not only on the sand wave geometry, but also on their kinematics.
Below, we shall show the relation between functions D(∆x) and D(τ) which will be used
in the next section for analysing the dispersity of sand waves.

Let us fix the elevation Z
!
of a point on the surface of a moving sand wave and watch

the motion of this point. Assuming that the point moves only in the longitudinal
direction and taking into account that Z

!
¯ const, we can write

dZ
!
¯

¥Z
¥x)

Z!

dx­
¥Z
¥t )

Z!

dt¯ 0. (10)

The finite difference approximation gives

∆Z(∆x)¯®∆Z(∆t). (11)

Squaring and averaging both parts of equation (11) over all points of the longitudinal
profile and time, we obtain the relationship

D(∆x)¯D(τ) (12)

relating the longitudinal and time structure functions (for convenience we have
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substituted ∆t by τ). At small enough ∆x and τ the functions D(∆x) and D(τ) can be
expressed by scaling relationships

D(∆x)¯ a
x
∆x#Hx, H

x
E 1±0, (13)

D
"
(τ)¯ a

t"
τ#Ht", H

t"
E 0±5, τ! τ

!
, (14)

D
#
(τ)¯ a

t#
τ#Ht#, H

t#
E 0±8–1±0, τ" τ

!
. (15)

In relationships (13)–(15) a
x
, a

t"
, and a

t#
are some coefficients, H

x
, H

t"
, and H

t#
are

Hurst’s exponents whose numerical values were obtained from experiments, and τ
!
is

the argument of the time structure function dividing the scaling regions (14) and (15).
It follows from (12)–(15) that

a
x
∆x#Hx ¯ a

t"
τ#Ht", τ! τ

!
, (16)

a
x
∆x#Hx ¯ a

t#
τ#Ht#, τ" τ

!
. (17)

Relationships (16) and (17) constitute an analytical basis for replacing the variables
when passing from the time structure functions to the spatial longitudinal ones and vice
versa:

D(τ)¯D((a
x
}a

t
)"/(#Ht)∆xHx/Ht), (18)

D(∆x)¯D((a
t
}a

x
)"/(#Hx) τHt/Hx). (19)

3.3. Sand wa�e spectra

The correlation function R(∆x,∆y, τ) and the three-dimensional spectrum S(K
x
,K

y
,ω)

contain the same information concerning the properties of the random field Z(x, y, t)
and thus they are of equal value. However, the spectral description of the field Z(x, y, t)
in the frequency–wavenumber space is often more vivid and convenient for analysis
and interpretation.

Here we shall consider the projection of the three-dimensional spectrum S(K
x
,K

y
,ω)

on the axes K
x
,K

y
, and ω :

S(K
x
)¯&&+¢

!

S(K
x
,K

y
,ω) dK

y
dω, (20)

S(K
y
)¯&&+¢

!

S(K
x
,K

y
,ω) dK

x
dω, (21)

S(ω)¯&&+¢

!

S(K
x
,K

y
,ω) dK

x
dK

y
. (22)

To determine S(K
x
), S(K

y
) and S(ω) from our field data we used Fourier transformation

of linear sections of the correlation function R(∆x,∆y, τ) on axes ∆x,∆y and τ together
with Tukey’s correlation window (Bath 1974). Examples of functions S(K

x
), S(K

y
) and

S(ω) are shown in figure 8. All the S(K
x
) and S(ω) spectra studied are characterized by

scaling regions where the spectral density decreases according to power law with the
exponent close to ®3. A second scaling region with the exponent close to ®2 (figure
8) can be also distinguished in the high-frequency region of the frequency spectra. Such
behaviour is in good agreement with frequency spectra of flume sand waves, given in
Shen & Cheong (1977) (see the Introduction). Both cases show behaviour (®2 for high
frequencies and ®3 for low frequencies) contrary to that established by Hino (1968).
A possible explanation of this discrepancy is that Hino’s (1968) results were obtained
from very limited data with poor frequency resolution. The S(K

y
) spectra also show

that at large K
y

they can be described by a power function. However, the power
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F 8. Examples of sand wave spectra : (a) frequency spectra S(ω), and
(b) wavenumber spectra S(K

x
) and S(K

y
).

exponents display rather strong differences from site to site : 2±1 for Wilga (Poland), 2±3
for Tirnava Mica (Romania) and 2±9 for Buzau (Romania).

These results provide grounds for presenting scaling spectra, S(K
x
), S(K

y
), and S(ω),

as follows:
S(K

x
)¯A

x
K−(#Hx+")

x
, H

x
E 1±0, K

x
"K

x!
, (23)

S(K
y
)¯A

y
K−(#Hy+")

y
, H

y
E 0±5–1±0, K

y
"K

y!
, (24)

S
"
(ω)¯A

t"
ω−(#Ht"+"), H

t"
E 0±5, ω

"
!ω!ω¢, (25)

S
#
(ω)¯A

t#
ω−(#Ht#+"), H

t#
E 1±0, ω

!
!ω!ω

"
, (26)
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where A
x
, A

y
, A

t"
and A

t#
are some coefficients, H

x
, H

y
. H

t"
and H

t#
are exponents that

characterize the structure of bottom elevation fluctuations, and K
x!

,K
y!

,ω
!
,ω

"
,ω¢ are

boundary wavenumbers and frequencies, respectively. The values of H
j
are in good

agreement with those obtained on the basis of the structure functions analysis,
relationships (13)–(15).

3.4. Sand wa�e dispersion relation

The velocity of sand wave propagation is an important kinematic characteristic that
determines the intensity of bed sediment transport. All existing formulae for calculating
the bottom sediment discharge using bathymetric data are based on the supposition
that sand waves propagate without changing their shape, at least from the statistical
point of view (Shen & Cheong 1977; Engel & Lau 1980; Cheong 1992). The use of this
assumption is equal to adopting the hypothesis that sand waves are non-dispersive, i.e.
their velocity C is independent of their wavelengths. However, the theoretical analysis
(Cartwright 1959; Kennedy 1963, 1969; Reynolds 1965; Gradowczyk 1968; Jain &
Kennedy 1974; Engelund & Fredsoe 1982) and some experimental data (Hino 1968;
Shen & Cheong 1977) point to the existence of sand wave dispersion, at least within
some scale ranges. In view of the importance of this question for sediment transport
analysis, we shall proceed with the study of this problem based on the obtained
experimental data. We shall apply three approaches: (i) analysis of the structure
functions, (ii) analysis of the frequency spectra and (iii) the method of cross-correlation
functions.

3.4.1. Analysis of structure functions

Relationships (16) and (17) constitute the theoretical basis for our analysis. Let us
transform them as follows:

C(∆x)¯
∆x

τ
¯ 0at"

a
x

1"/(#Ht")

∆x(Ht"−Hx)/Ht", τ! τ
!
, (27)

C(∆x)¯
∆x

τ
¯ 0at#

a
x

1"/(#Ht#)

∆x(Ht#−Hx)/Ht#, τ" τ
!
. (28)

Substituting numerical values of the exponents H
i
into (27) and (28) yields

C(∆x)£∆x−", τ! τ
!
, (29)

C(∆x)£∆x−(!
–
!
±
#&), τ" τ

!
. (30)

The time scale τ
!

separating two zones – with dispersion (29) and without dispersion
(30) – corresponds to wavelengths in the range 0±15h to 0±25h, where h is the time-
averaged depth over measured sand waves. To get the above range we used
relationships (16) and (17) whence it follows that

(∆x or λ)}h¯ (a
t"
}a

x
)"/(#Hx) τHt"/Hx

!
}h¯ (a

t#
}a

x
)"/(#Hx) τHt#/Hx

!
}h.

3.4.2. Analysis of frequency spectra

The longitudinal wavenumber S(K
x
) and the frequency S(ω) spectra can be related

as
S(K

x
) dK

x
¯S(ω) dω. (31)

From (23), (25), (26) and (31), after integration we obtain

C(K
x
)¯

ω

K
x

£K(Hx−Ht")/Ht"
x

, ω
"
!ω!ω¢, (32)

C(K
x
)¯

ω

K
x

£K(Hx−Ht#)/Ht#
x

, ω
!
!ω!ω

"
. (33)
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Substituting the numerical values of the exponents H
x
, H

t"
and H

t#
from the previous

section into (32) and (33) gives

C(K
x
)£K

x
, ω

"
!ω!ω¢, (34)

C(K
x
)£K!

x
, ω

!
!ω!ω

"
. (35)

As for the case of the structure functions, the estimation of wavelengths corresponding
to the boundary frequency ω

"
produces (0±15–0±25) h.

3.4.3. Method of cross-correlation functions

The method of cross-correlation functions can be regarded as a direct one. Its
detailed description and substantiation is given by Bendat & Piersol (1980). The
essence of this method is in the estimation of the time shift τ

m
that corresponds to the

maximum ordinate of the longitudinal cross-correlation function R
ij
(τ) at fixed ∆x (it

is worth pointing out that function R
ij
(τ) may be regarded as a linear section of the

function R(∆x, 0, τ) at given ∆x). The velocity of sand waves is then determined from
C¯∆x}τ

m
. Carrying out a consecutive band filtration of bottom elevation time series

and applying the described method to filtered series we can determine if the velocity of
sand waves depends on their period or on their wavelength. For the band filtration we
have utilized the Tukey cosine-filter (Bendat & Piersol 1980).

Figure 9(a) shows the results of calculations for all three river reaches on the Wilga
(Poland), Tirnava Mica (Romania) and Buzau (Romania) Rivers. To eliminate the
substantial stratification of the experimental points on graph C¯ f(λ), we have studied
various approaches for normalizing the velocity C and the length λ of the sand waves.
The most successful of our attempts are given in figures 9(b) and 9(c). These are based
on the relationship of Snishchenko & Kopaliani (1978)

C¯ 0±019uFr#±
* (36)

that was obtained from many laboratory and field data and from the assumption of
non-dispersity of sand waves. Taking into account that relationship (36) characterizes
the velocity of prevailing sand waves whose lengths are, as a rule, larger than the flow
depth (Snishchenko & Kopaliani 1978), we have proposed a more general form

C¯ uFr#±
* f 0 gλ

u# (or u#

$

)1 , (37)

where u
$

is the friction velocity (to test relationship (37) we defined the friction velocity
by u

$

¯ (τ
s!
}ρ)"/#¯ (ghI)"/#, where h is the time-averaged depth over measured sand

waves, I is the water surface slope, and τ
s!

is the bed shear stress, table 1), and u is the
vertically averaged flow velocity. At large gλ}u# or gλ}u#

$

, we expect that the function
f(gλ}u# (or u#

$

)) tends to a constant value equal to 0±019, and a relationship (37)
becomes identical to (36). At small gλ}u# or gλ}u#

$

the function f(gλ}u# (or u#

$

)) tends
to the power function with exponent ®1. To some extent figures 9(b) and 9(c) confirm
our hypothesis. As the first approximation for small wavelengths we can write

C¯ 0±66uFr#±
* (gλ}u#)−" (38)

or, when using u
$

,
C¯ 86uFr#±

* (gλ}u#

$

)−". (39)

Unlike the structure functions and spectra, which allowed us to consider the dispersion
relation for small wavelengths, the resolving power of the cross-correlation functions
method is substantially lower. This is restricted by minimum distances between the
microsound radiators. We believe that this explains the region in figures 9(b) and 9(c)
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F 9. Graphs of C¯ f(λ) (a), C}(uFr#±
*)¯F(gλ}u#) (b), and C}(uFr#±

*)¯ f(gλ}u#

$

) (c) for the
Wilga River (squares), the Tirnava Mica River (triangles) and the Buzau River (circles). To test
relationship (37) we defined friction velocity by u

$

¯ (ghI )"/#, where h is the time-averaged depth over
measured sand waves, I is the water surface slope.

where C£K
x
is not distinguished clearly. The minimum wavelengths shown in figures

9(b) and 9(c) exceed 0±8h, while from the analysis of structure functions and spectra
the dispersive region with C£K

x
corresponds to scales that are less than (0±15–0±25)

h. Probably, in figures 9(b) and 9(c) we have only the transition zone between the
regions with C£K

x
and C£K!

x
, as well as the region with C£K!

x
. Hence,

relationships (38) and (39) should be regarded as preliminary, requiring verification.
Thus, all three approaches provide results which are in qualitative agreement: in the

region of small wavelengths, at λ% (0±15–0±25) h, one can observe the dispersion of
sand waves in the form of C£K

x
; while in the lower-frequency region, λ& (3–4) h, the

sand waves show no significant dispersion, i.e. C£K!
x
.
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(b), for the Wilga River, Poland (h is the time-averaged depth over measured sand waves).

Probably, the sand wave dispersion in the ranges considered is a possible reason for
the substantial deformation observed in individual sand waves in the process of their
movement. It is clearly expressed in the rapid deformation of the cross-correlation
functions R

ij
(τ) with the increase of the distance ∆x between measuring verticals (figure

10). When the sand wave field is totally non-dispersive and ∆x changes, the curve R
ij
(τ)

must shift to the right without modifying its form. However, in a real situation, we
observe deformation of R

ij
(τ) : when ∆x increases, the maximum ordinate of R

ij
(τ)

decreases (figure 10a). Having defined the ∆x
!

at the zero value of R
ij
(∆x, τ¯ τ

m
)

where τ
m

corresponds to the maximum ordinate of the longitudinal cross-correlation
function R

ij
(τ) at fixed ∆x, we can approximately estimate the distance over which the

total loss of sand wave individuality occurs. By extrapolating the curve R
ij
(∆x, τ¯ τ

m
)

in figure 10(b) towards increasing ∆x, we find ∆x
!
E (4–6) h. Thus, having moved a

distance of several wavelengths, the sand waves lose their individual properties
completely.

3.4.4. Discussion

From the existing theoretical considerations (Cartwright 1959; Kennedy 1963, 1969;
Reynolds 1965; Gradowczyk 1968; Jain & Kennedy 1974; Engelund & Fredsoe 1982)
it follows that for sufficiently large wavenumbers we have C£K

x
£λ−" while for the

region of small wavenumbers no significant dispersion occurs. Hino (1968) used the
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F 11. Two types of sand wave movement.

relation C£K
x
£λ−" to derive relation (3), S(ω)£ω−#, from S(K

x
)£K−$

x
. At the same

time, for the region of higher frequencies he suggested that both frequency and
wavenumber spectra have the same exponent ®3. This automatically means non-
dispersity of small sand waves, and that does not agree with either the existing theory
or our measurements. In spite of our experimental results proving to be consistent with
the theoretical predictions we cannot be fully satisfied. The reasons for this are : (i) the
above theoretical models are based on a number of assumptions (potential flow,
perturbations of small amplitude, etc.) that restrict their applicability to the case of
fully developed sand waves (McLean 1990) ; and (ii) they do not consider physical
mechanisms of sand wave movement. However, we believe that the mechanisms of
sand wave movement can be a possible explanation of the observed sand wave
dispersion.

Based on numerous observations of sand waves in rivers, two types of sand wave
movement can be distinguished (figure 11). The first type (I) is for the region of large
wavenumbers (small wavelengths) and the second one (II) is for the region of small
wavenumbers (large wavelengths). The small sand waves move due to the motion of
individual sand particles (type I, figure 11) while larger sand waves propagate as a
result of the motion of smaller waves on their upstream slopes (type II, figure 11). In
the same manner as sand particles in the first type, these smaller waves redistribute
sand material from upstream slopes to downstream ones. Both types result in sand
wave movement downstream. We will use these considerations to obtain the dispersion
relation.

In general, the propagation velocity of an individual sand wave is

C¯∆l}∆t, (40)
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where ∆l is the distance the sand wave moves in time ∆t. Applying relationship (40) for
the case of small sand waves (type I) and assuming, reasonably, ∆t£Nd£ h

w
£λ

(N is the number of particles of size d covering the downstream slope of a sand wave)
when ∆l£ d (figure 11) we have

C£ d}λ£λ−"£K
x
. (41)

The reason to assume that sand wave height h
w

£ sand wavelength λ is based on the
self-similar spectrum S(K

x
)£K−$

x
that reflects statistical self-similarity of sand waves

(Hurst exponent H
x
¯ 1, see the Introduction). So, for the case of the small waves,

dispersion relation (41), C£K
x
£λ−", should be expected. Indeed, we found this from

the experiments. For large sand waves (type II), it is natural to assume ∆t£ h
wl

when
∆l£ h

ws
, where h

ws
is the height of small sand waves moving on the upstream slope of

large waves of height h
wl

(figure 11). Using a spectral representation, the heights h
wl

and h
ws

can be expressed as h
ws

£ ²S(K
xs

) dK
x
´"/# and h

wl
£ ²S(K

xl
) dK

x
´"/#, respectively.

With this their propagation velocity will be

C£
h
ws

h
wl

£
²S(K

xs
) dK

x
´"/#

²S(K
xl
) dK

x
´"/#

£
²S(K

xs
) dK

x
´"/#

²S(nK
xs

) dK
x
´"/#

£K!
x
£ const, (42)

where S(K
x
)£K−$

x
, and n! 1. From relationship (42) the large sand waves should

move without dispersion. This was observed in our experiments. For the case of our
study, the relationship C£K

x
£λ−" is valid when λ! (0±15–0±25) h, and no significant

dispersion occurs at λ& (3–4) h.
The above scaling consideration significantly simplifies the process, which is much

more complex in reality. A new insight into the problem should be obtained by finite-
amplitude models that couple wakes and boundary layers over sand waves with
mechanisms of sand transport. Such models are being developed but they still need to
be improved (McLean 1990).

4. Some properties of the flow turbulence over moving sand waves

To evaluate the properties of the flow turbulence over the sand waves investigated,
we carried out joint measurements of instantaneous velocities and bottom elevations
at fixed verticals on the Wilga River (Poland) and on the Tirnava Mica River
(Romania). The total duration of measurements was 4 h (Wilga) and 6±5 h (Tirnava
Mica). The bottom elevations were measured every 2 min. Velocity measurements were
made at three (Wilga) and six (Tirnava Mica) points simultaneously in the Z}h¯
0±29–0±96 layer in separate series of 4–5 min each. The sampling interval was 0±1 s
(Wilga) and 0±075 s (Tirnava Mica). The breaks between series of velocity
measurements ranged within 10 to 15 min. Taking account of the space–time scales of
bottom elevation fluctuations given in the previous sections, the scheme of
measurements adopted allowed us to obtain a set of quasi-stationary time series of
velocities that correspond to various phases of sand waves. From the measured data,
we calculated the local mean velocity U{ , the velocity variance σ#

u
, the turbulence

intensity K¯σ
u
}U{ , the correlation functions and frequency spectra, and the turbulent

energy dissipation ε for each time series. The limited number of measuring points
precludes a detailed characterization of the turbulence structure over sand waves.
More detailed pictures are given in the works of Smith & McLean (1977), McLean &
Smith (1979), Nikora (1985), Grinvald & Nikora (1988), Nelson, McLean & Wolfe
(1993), McLean, Nelson & Wolfe (1994). Therefore, here we shall limit ourselves to the
quantitative estimation of the modulating influence of sand waves upon turbulence.



36 V. I. Nikora, A. N. Sukhodolo� and P. M. Rowinski

L ~ Sand wavelength

10–2

10–1

1

10

10–1 1 10

ω (rad s–1)

S(
ω

) 
(c

m
2 

s–1
)

3

5 95 %

L ~ 0.5 River width

ε0 ε

F 12. Example of a longitudinal velocity frequency spectrum for the Wilga River (Poland).

z}h
U

(m s−")

σ
ua

U
σ#

u

(cm# s−#)
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σ
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ε
(cm# s−$)

σε

ε

The Wilga River (Poland), h¯ 0±255 m
0±30 0±34 0±047 20±1 0±14 0±130 0±09 6±9 0±24
0±53 0±37 0±031 10±5 0±12 0±088 0±09 2±0 0±18
0±76 0±39 0±030 8±5 0±12 0±076 0±08 1±3 0±18

The Tirnava Mica River (Romania), h¯ 0±374 m
0±29 0±44 0±082 29±2 0±16 0±130 0±07 9±7 0±25
0±37 0±51 0±061 33±1 0±13 0±121 0±08 6±6 0±19
0±49 0±53 0±056 24±5 0±16 0±094 0±07 5±3 0±22
0±65 0±54 0±037 18±3 0±16 0±083 0±06 2±1 0±20
0±81 0±57 0±035 13±1 0±14 0±063 0±06 0±52 0±16
0±96 0±55 0±036 7±4 0±19 0±050 0±05 0±45 0±24

T 3. Turbulence characteristics and their variability. Here h is the flow depth averaged over the
whole period of measurements ; z is the average distance from the bottom; K is the turbulence
intensity, K¯σ

u
}ua ; σ

ua
, σσ#

, σ
K
, and σε are standard deviations of local mean velocity, turbulence

energy, turbulence intensity, and turbulent energy dissipation, respectively ; and the double overbar
denotes the averaging of the values obtained for each separate velocity time series.

Table 3 shows the turbulence characteristics averaged with respect to all time series,
as well as their relative variation conditioned by sand waves passing through the
measuring vertical. The averaged velocities show the least variation (3–8±2%). The
turbulence energy σ#

u
and the turbulence intensity K are characterized by higher

variability, reaching 5–19% (table 3).
In frequency spectra of longitudinal velocities, despite relatively small Reynolds

numbers, one can observe wide ranges of frequencies corresponding to the inertial
subrange (figure 12)

S(ω)¯ cU{ #/$ε#/$ω−&/$. (43)

Two frequency ranges described by (43) occur in practice on all of the spectra obtained.
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These are separated by the local spectral maximum, which can be interpreted as an
additional energy supply region caused by the interaction between flow and sand waves
(Grinvald & Nikora 1988). The spatial scale corresponding to this energy supply region
is close to the length of prevailing sand waves (figure 12).

The low-frequency boundary of the left-side inertial subrange corresponds to 8–9
flow depths or to half of the river width. Thus, applying (43) we can determine the
inflow of energy ε

!
into the turbulence spectrum as a result of hydrodynamic instability

on scales of the river half-width (the left-side inertial subrange), as well as the turbulent
energy dissipation ε (using the right-side inertial subrange) and the quantity of energy
inflow due to the influence of sand waves ∆ε¯ ε®ε

!
(figure 12). Table 3 shows the ε-

values averaged in respect to all time series, as well as the variation in ε caused by the
passing sand waves. It follows from table 3 that this characteristic is subjected to the
strongest influence of sand waves, varying in the range from 16% to 25%. The
contribution of sand wave influence upon the whole turbulence energy flux ∆ε}ε

!
varies

from 3 to 8, thus providing grounds for considering the sand waves as the main
mechanism to regulate the energy losses of the flow. The above-mentioned quantitative
parameters of turbulence characterize the intermediate region of the flow. It is obvious
that in the region near the bottom the influence of sand waves is considerably stronger.

5. Summary

Longitudinal wavenumber spectra of sand waves in the region of large wavenumbers
follow Hino’s ®3 law (S(K

x
)£K−$

x
) quite satisfactorily, confirming the theoretical

predictions of Hino (1968) and Jain & Kennedy (1974). At the same time, frequency-
spectra scaling behaviour proved to be quite different from the earlier results of Hino
(1968), who found two frequency regions, with scaling exponents ®3 for large
frequencies and ®2 for smaller ones. Our results also showed two scaling regions but
with exponents ®2 for large frequencies and ®3 for smaller ones. The transverse
wavenumber spectra of sand waves can be described at large wavenumbers by a power
function; however, the scaling exponents appeared to vary from one river reach to
another. Analysis of time and spatial structure functions showed similar scaling
behaviour.

Three methods for investigating dispersion properties of sand waves (structure
functions, spectral analysis and cross-correlation functions) produced the same result :
in the region of small wavelengths (λ' h) dispersion (CCKCλ−") occurs, while in the
region of large wavelengths (λ( h), dispersion is practically absent (CCK !Cλ!).
This result also does not agree with Hino’s (1968) analysis, but it is in satisfactory
agreement with theoretical models (Kennedy 1963; Jain & Kennedy 1974) and with
physical analysis of sand wave movement at small and large scales. The parametrization
of the sand wave dispersion relation C¯ f(λ) with vertically averaged flow velocity,
depth Froude number, and wavelength Froude number significantly reduced the
experimental point scatter. We believe that the dispersion relationships derived can be
used for estimations of sediment transport by sand waves.

The modulating influence of sand waves on the average velocity and turbulence is
reflected in their strong space–time variation: 3–8% for the local mean velocity,
12–19% for the turbulence energy, 5–9% for the turbulence intensity, and 16–25% for
the turbulent energy dissipation.
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